Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling
نویسندگان
چکیده
Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.
منابع مشابه
Profilin is an effector for Daam1 in non-canonical Wnt signaling and is required for vertebrate gastrulation.
Non-canonical Wnt signaling plays important roles during vertebrate embryogenesis and is required for cell motility during gastrulation. However, the molecular mechanisms of how Wnt signaling regulates modification of the actin cytoskeleton remain incompletely understood. We had previously identified the Formin homology protein Daam1 as an important link between Dishevelled and the Rho GTPase f...
متن کاملmTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow-derived mesenchymal stem cells.
The cell cytoskeleton interprets and responds to physical cues from the microenvironment. Applying mechanical force to mesenchymal stem cells induces formation of a stiffer cytoskeleton, which biases against adipogenic differentiation and toward osteoblastogenesis. mTORC2, the mTOR complex defined by its binding partner rictor, is implicated in resting cytoskeletal architecture and is activated...
متن کاملSrc regulates phorbol 12-myristate 13-acetate-activated PKC-induced migration via Cas/Crk/Rac1 signaling pathway in glioblastoma cells.
In this study, we demonstrate that phorbol 12-myristate 13-acetate (PMA)-activated protein kinase C (PKC) induced migration in A172 glioblastoma cells via Src. PMA treatment induced tyrosine phosphorylation of Crk-associated substrate (Cas) and formation of a complex with Crk, followed by Rac1 activation, a downstream effector of Cas/Crk complex. These effects were blocked by a tyrosine kinase ...
متن کاملThe Involvement of Rho-Associated Kinases (ROCKs) in EphA4 Signaling in <i>Xenopus laevis</i>
XEphA4 is a cellular receptor that functions to regulate cell and tissue interactions in amphibian embryos via a repulsive mechanism that involves actin cytoskeleton reorganization. Ectopic EphA4 signaling in Xenopus embryos results in a loss of cell-adhesion and rounded cell morphology, and this phenotype is consistent with EphA4 signaling in cultured A6 cells. How EphA4 achieves its effects o...
متن کاملMUC1 initiates Src-CrkL-Rac1/Cdc42-mediated actin cytoskeletal protrusive motility after ligating intercellular adhesion molecule-1.
MUC1, a transmembrane glycoprotein of the mucin family, when aberrantly expressed on breast cancer cells is correlated with increased lymph node metastases. We have previously shown that MUC1 binds intercellular adhesion molecule-1 (ICAM-1) on surrounding accessory cells and facilitates transendothelial migration of MUC1-bearing cells. Nevertheless, the underlying molecular mechanism is still o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015